Abstract:
The fast-growing public health awareness and concern of the devastating problems with bacterial infections and the mounting resistance of bacteria to conventional antibiotic treatments have made this theme the top concern. At the same time the problem will not be solved through solely inventions of antimicrobial materials preventing the prevalence of bacteria resistance. Nevertheless, the fabrication and design of these materials are highly important to find its translational applications in our daily life. In this context, electrospun materials with their inimitable advantages and facile production make them a suitable candidate for various applications. The electrospinning technology represents a versatile and facile approach for the construction of ultrathin electrospun fibers from various materials. Then, it allows the fabrication of electrospun fibers with various and controlled dimensions such as nanosized fibers which have gained significant attention due to their valuable properties such as high surface area, large porosity, and lightweight. Through the combined electrospinning and antimicrobial material employment, a very powerful, robust, and vital strategy for engineered material can be generated. These materials can be employed in many areas such as healthcare (eg, tissue repair, drug delivery, and wound healing), environmental application (eg, filters and membranes), energy applications (solar and fuels cells), and in protecting clothing for medical and chemical workers.